

BEST PRACTICES FOR MANAGING NITROGEN IN NO-TILL

Lloyd Murdock University of Kentucky January 11, 2012

ABSOLUTELY BEST PRACTICE FOR MOST CROPS AND PLACES

1. Split N with a portion early in life cycle and the remainder close to rapid N uptake

2. Inject the N below the residue layer

N Losses in High Residue

- 1. Immobilization into organic matter surface applied N
- 2. Volatilization urea into air surface applied Urea
- 3. Denitrification and Leaching into air or into ground water excessive wetness all situations

20% less SOC after 12 years with MP

35 Years Of Continuous NT			
Depth	<u>NT 35 Yr</u>	CT 25 yr fb NT 10 yr	
0-1"	3.1	2.4	
1-2"	3.1	2.4	
2-3"	3.1	2.4	
3-4"	3.1	2.4	
4-5"	3.1	2.4	
5-6"	3.2	2.5	
6-7"	3.2	2.4	
7-8"	2.9	2.0	
8-10"	2.9	2.0	
10-12"	2.4	1.8	
12-14"	17	18	

M. Plumer, U of I

Ebelhar, 2007

Nitrogen in Organic Matter

- 1. C:N ratio in soil OM = 20:1
- 2. 1% OM X 2 million lbs = 20,000 lbs/ac
- 3. 20,000 X 5% N = 1,000 lb N/ac
- 4. Increase OM 0.5% = 500 lb N/ac
- 5. Yearly differences vary with crop
- 6. N demand changes over time

Fate Of Fertilizer N In No-Tilled And Conventional Tilled Maury Soil

			<u>Fertili</u>	zer N
<u>N Rate</u> (Ib/acre)	<u>Tillage</u>	<u>In Grain</u> (%)	<u>Immobilized</u>	<u>Lost</u> (%)
75	No-Till	23	42	29
75	Conventional	40	27	26
150	No-Till	29	39	25
150	Conventional	28	37	27

Effect Of Nitrogen Source And Placement On No-Till Corn Yield					
	AGRY	SEPAC	AGRY	SEPAC	SWPAC
	1979 1980				
150 Lbs N	Bu/Acre				
28% Inj.	165	135	137	152	168
28% Surf.	156	124	121	134	138

IMMOBILIZATION SOLUTIONS

1. Inject

2. Add More N ~ 15-30 lbs/ac

Average Percent Loss of N by Volatilization			
	Urea Incorporated into Soil	Ammonium Nitrate	
	0	0	
	Surface Applied		
¹ ⁄₄" Rain within 3 Days	0	0	
Bare Ground	0-10	0	
No-Till	0-50	0	
Pasture	0-50	0	
a. Early application reduces losses			

b. Band nitrogen reduces losses

VOLATILIZATION

- **1. Urea is Fertilizer of Choice**
- 2. Urea is Soluble
- 3. It must Hydrolyze (break down) to get NH₄+
- 4. Intermediate Compounds are Unstable

(Ammonium Carbonate)

- 5. Complete Reaction in 4 to 7 days
- 6. Reaction Can Be Delayed by Urease Inhibitor

Ammonia Volatilization is Controlled By:

Temperature

•Cool Temperatures Reduce Reaction Rate and Losses (60°at 4")

Moisture

•Warm Moist Soil, with Residue Increase Loss •Rain or Irrigation within 2 das Greatly Reduces Loss •Extremely Dry Conditions Greatly Reduces Loss

Contact with Soil

Ammonium held by Soil
Surface, and Below Surface
Risk is Small on Bare Soil with pH < 6.5

Ammonia Volatilization is Controlled By:

<u>Soil pH</u>

Loss Increases Greatly Above 6.5 pH

Summary

Loss is Greatest in MidSouth

Sods After May 1 (Average)

No-Till Residue After May 1 (Average)

Relative Differences in No-Till Corn Production by N Sources and An Inhibitor (4 Years)

	Yield Increases for Added N
N Treatments	%
None	0
Ammonium Nitrate	100
Urea	80
Urea + NBPT	97
UAN	83
UAN + NBPT	100

Yield of Corn Treated with Different Soil Nitrogen Fertilizers and Additives

	Treatment		Yield (bu/ ac)
<u>Source</u>	Rate	Additive	<u>Avg.</u>
-	0	-	104 C
ESN	75	Polymer	174 A
Am. Nitrate	75	-	172 A
Urea	75	-	152 B
Urea	75	Agrotain	169 A
Urea	75	NSN	155 B
0.1 level of significance 0.2 CV = 5.7			

20th Annual National No-Tillage Conference St. Louis, Missouri * Jan. 11-14, 2012

New Tool : Polymer Coated Urea

20th Annual National No-Tillage Conference St. Louis, Missouri * Jan. 11-14, 2012

Slow Release Fertilizer Hydration

Solutions to Volatilization Loss:

Put Urea into Soil •Rain, Irrigation, Tillage, Injection

Apply More Nitrogen •Can Not Afford This Any More

Use a Urea Inhibitor or Polymer

DENITRIFICATION - LEACHING

- **1. Excessive Wetness**
- 2. Sandy Soils Leaching
- 3. Poorly Drained Soils Denitrification
- 4. Early in Season
- 5. After N Applied
- 6. No-Till Adds to Loss

Effect of Nitrogen Rates on NoTill Corn Yield on Somewhat Poorly Drained Soils

Benefits of Sidedressing:

1. 25% N Loss During Wet Springs

- 2. 200 lb/ac X 0.25 = 50 lb Loss
- 3. 50 lb/ac X 0.25 = 12.5 lb Loss

Effect of Tillage, Row Fertilizer and Row Cleaning of Residue on Corn Yield

	Treatment		
Tillage	Row <u>Fertilizer</u>	Row <u>Cleaner</u>	Yield <u>(bu/ac)</u>
Chisel + Disc	No	No	132.1 A
No-Till	No	No	114.0 B
No-Till	Yes	No	123.0 AB
No-Till	No	Yes	131.2 A
No-Till	Yes	Yes	136.9 A
Chisel Only	No	Yes	128.1 AB

Row Fertilizer: 10 gal/ac of 12-36-0 Planting Date: 4-25-89 Tilsit silt loam (moderately well-drained) Row cleaner removed 90% of residue over the row (10% band)

DENITRIFICATION – LEACHING SOLUTIONS

- 1. Sidedress Half or More of the N
- 2. Add a Nitrification Inhibitor When Large Amounts of N are Applied Early
- 3. Anhydrous Ammonia is Very Good in this Situation
- 4. Use a Polymer Coated Product

SUMMARY

- 1. Injecting and Split N Applications Protect You Against Everything
- 2. Two Biggest Problems Volatilization and Denitrification Leaching
- 3. Volatilization
 - non urea sources
 - injection
 - proven urease inhibitors
 - polymer coated urea
- 4. Denitrification Leaching
 - split application
 - anhydrous Ammonia and/or Nitrification Inhibitor
 - polymer coated urea

GREENSEEKER WHEAT UPDATE 2011

Lloyd Murdock **Dottie Call John James**

20th Annual National No-Tillage Conference St. Louis, Missouri * Jan. 11-14, 2012

20th Annual National No-Tillage Conference St. Louis, Missouri * Jan. 11-14, 2012

20th Annua

Algorithm Used for Field Trials in 2010 and 2011 on a Moderate to Well Drained Soil (Pembroke)

N Needed at <u>Feekes 6</u>	Differential <u>NDVI Algorithm</u>
140	>0.24
110	0.11 – 0.24
85	0.04 – 0.11
55	0.02 – 0.04
25	0.01 – 0.02
0	<0.01

Effect of Greenseeker (VRN) On Wheat

1. Three Replicated Field Studies All with Significant Responses Average Response

> Yield = 4 bu/ac Increase N = 7 lb/ac Increase Returns = \$20/ac Increase

Actual Field NDVI

N Rich

Ν

N

e

d e d

а

t

F

e

e

k

6

.66