

Signals That Show A Need To Use Glyphosate More Judiciously

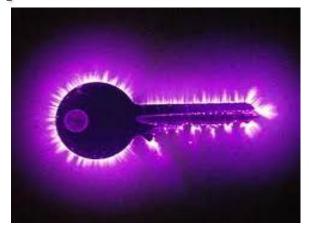
Don M. Huber
Professor Emeritus, Purdue University
January 12, 2012

Importance of Reducing Stress

Genetic Potential

Nutrition
Physiology
Management
Environment
Diseases
Pests

Genetic potential minus Stress equals Yield



Nutrients are:

Components of plant parts as well as

Activators,

Inhibitors,

and Regulators

of Physiological Processes Many herbicides and pesticides are chelators

Interacting Factors Determining Nutrient Availability and Disease Severity

Vigor, Stage of Growth, Root Exudates PLANT Resistance **Susceptibility ABIOTIC PATHOGENS ENVIRONMENT** TIME **Population Nutrients** Virulence Moisture **Activity Temperature** pH (redox potential) **Density**, gases Ag Chemicals

BIOTIC ENVIRONMENT

Antagonists, Synergists, Competitors, Mineralizers

Oxidizers, Reducers, Fixers [Cu, Fe, K, Mn, N, S, Zn]

UNDERSTANDING GLYPHOSATE

• A strong chemical chelator Chelating stability constants

Chelates minerals in the spray tank

Chelates minerals in the plant

Chelates minerals in the soil

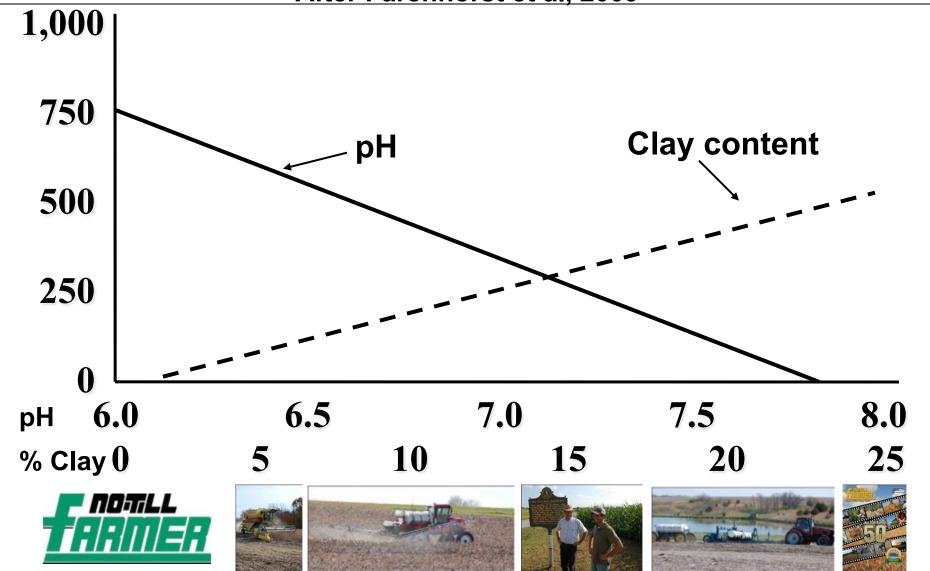
Reduces: B, Ca, Co, Cu, Fe, K, Mg, Mn, Ni, Zn

	oi giypiiosate					
k		[ML]	[MHL]	[ML ₂]		
Me	etal ion	[M][L]	[M][H][L]	[M][L2]		
	Mg2+	3.31	12.12	5.47		
	Ca2+	3.25	11.48	5.87		
	Mn2+	5.47	12.30	7.80		
	Fe2+	6.87	12.79	11.18		
	Cu2+	11.93	15.85	16.02		
` †	Fe3+	16.09	17.63	23.00		

Non-specific herbicidal effect Fe3+

Glyphosate

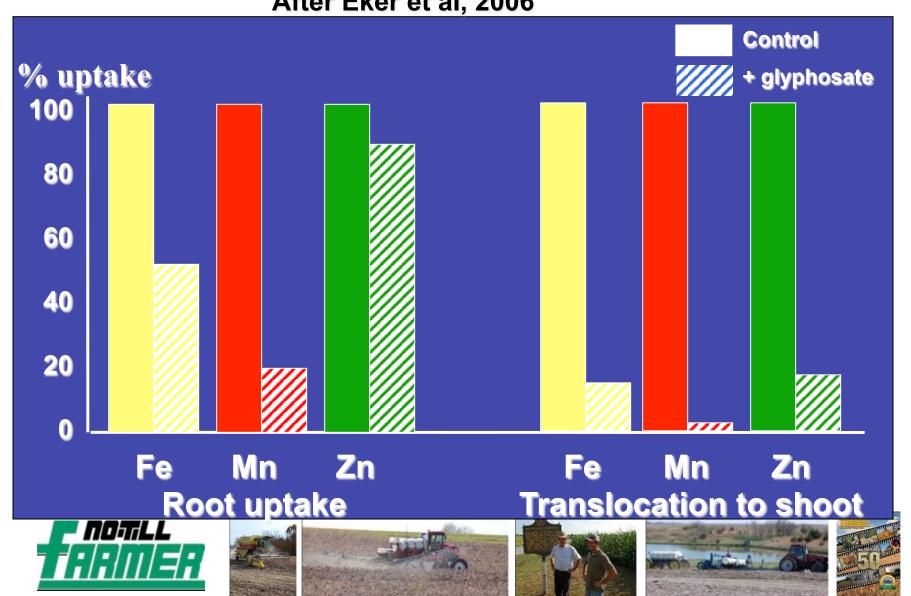
Glyphosate + Zn tank mix



Gyphosate Immobilizes nutrients

Factors Affecting Soil Sorption of Glyphosate

After Farehnorst et al, 2009



Effect of P Desorption of Glyphosate

Effect of 'Drift' Glyphosate on Nutrient Uptake

After Eker et al, 2006

20th Annual National No-Tillage Conference St. Louis, Missouri * Jan. 11-14, 2012

- 1. Glyphosate is a systemic, broad-spectrum herbicide that intensifies stress
- 7. Glyphosate accumulates in soil (fast sorption; slow degradation)

 Desorbed by phosphorus

Beneficial soil organisms include

N-fixing microbes

Any with bacterial shikimate pathway

N-fixing organisms

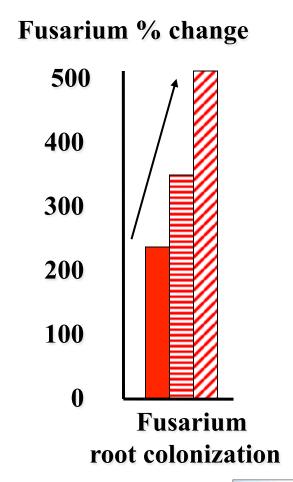
Mycorrhizae

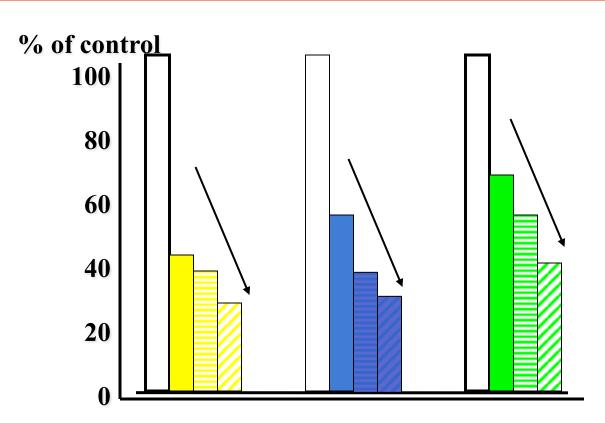
Biological control organisms

- 70-Plant Growth Promoting organisms

Earthworms

- 2. Glyphosate accumulates in sort Jac 11-No-Tibiopedudey 56 No-tikes plant tissues (shoot and root tips, reproductive structures, and legume nodules)
 - 3. Some glyphosate moves into roots and is released into soil
 - 4.Makes the plant susceptible to diseases
 - 5. Increases virulence of soilborn disease organisms
 - 6. Is toxic to normal biological control and other beneficial organisms





Microbiocidal Activity of Glyphosate

Pseudomonads

Mn reducers

IAA producers

After Zobiole et al., 2010, Kremer, 2010

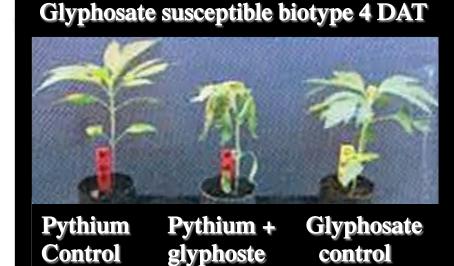
Herbicide action is by soil-borne fungal pathogens Glyphosate Increases Disease Susceptibility

Glyphosate Sterile soil

Glyphosate No glyphosate Field soil Control

Effect of glyphosate on susceptibility to anthracnose. A) hypersensitive response B) non-limited response after glyphosate is applied.

After Rahe and Johal, 1988;1990; Johal and Huber, 1999; Schafer et al, 2009,2010.


Role of Soil Pathogens in Response to Glyphosate

- Glyphosate increased susceptibility to *Pythium and Fusarium* - readily colonized susceptible giant ragweed roots when treated with glyphosate
- Resistant Giant Ragweed in unsterile soil were killed by a 4x rate of glyphosate, yet susceptible biotypes were not killed with the same rate in sterile soil.
- Resistant giant ragweed biotypes were resistant to Pythium and Fusarium

Glyphosate treated
Susceptible biotype Resistant biotype

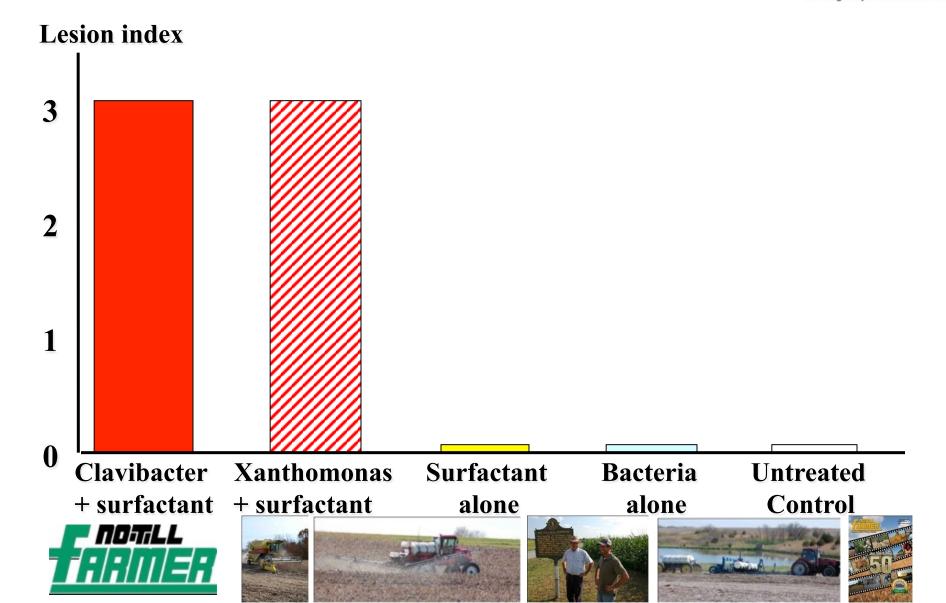


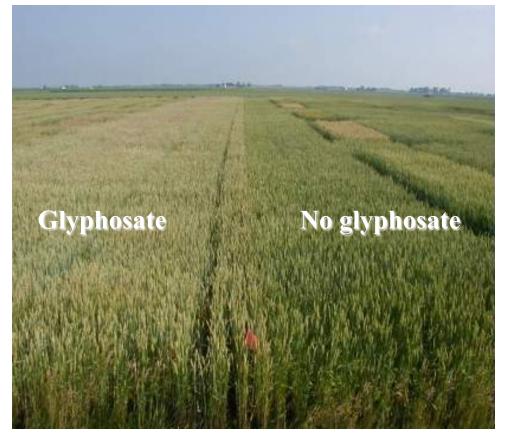
Ridomil Ck Ridomil Ck Fungicide

Effect of Glyphosate on Corynespora RootRot

Glyphosate Predisposition To Sudden Death Syndrome

Glyphosate Predisposition to Goss' William




Predisposition to Goss' and Stewart's Wi

Predisposition to Severe Take-all

Take-all of wheat after glyphosate to RR beans

Glyphosate Predisposition to Fusarim Head

- ✓ Environment was the most important factor in FHB development in eastern Saskatchewan, from 1999 to 2002
- ✓ Application of glyphosate formulations
 was the most important agronomic
 factor associated with higher FHB
 levels in spring wheat

(Fernandez et al. 2005, *Crop Sci. 45: 1908-1916*) (Fernandez et al., 2007, Crop Sci. 47:1574-1584)

Number of
glyphosate
applications
the <u>previous</u>
three years
-

%
Increase
in head
scab

None	100

What's Special About Genetic Engineering for Glyphosate Tolerance? (Roundup Ready®)

- The technology inserts an alternative EPSPS enzyme that is not blocked by glyphosate in *mature* tissue
- There is nothing in the RR plant that operates on the glyphosate applied to the plant!

Glyphosate chelation is not selective it immobilizes nutrients

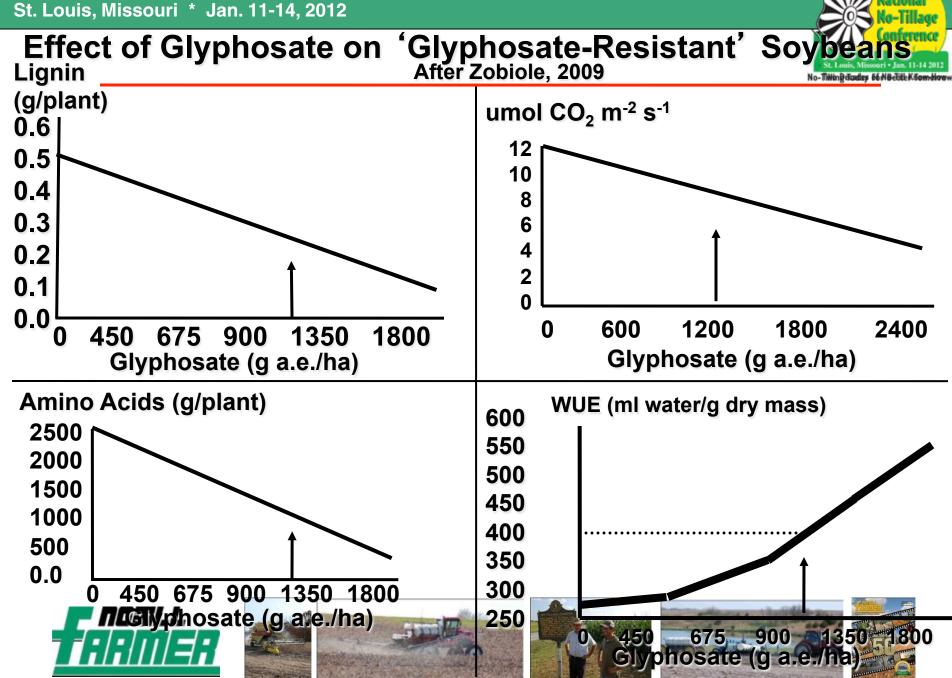
Can cause a"Yield Drag"

noall

It is there for the life of the plant

Reduced Nutrient Efficiency of Isogenic RR Soybeans (After Zobiole et al, 2008, 2009)

Tissue:	Mn	Zn	Variety range
Isoline	%	%	%
Normal	100	100	100
Roundup Ready©	83	53	10-70
RR + glyphosate	76	45	



20th Annual National No-Tillage Conference St. Louis, Missouri * Jan. 11-14, 2012

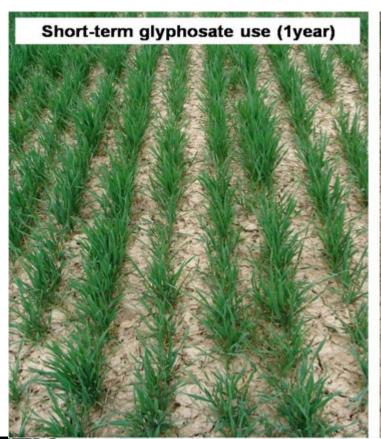
% Mineral Reduction in Roundup Ready. Soybeans Treated with Glyphosate

After Cakmak et al, 2009

Plant tissue	Ca	Mg	Fe	Mn	Zn	Cu
Young leaves	<u>40</u>	28	7	<u>29</u>	NS	NS
Mature leaves	<u>30</u>	34	<u>18</u>	48	30	27
Mature grain	<u>26</u>	<u>13</u>	<u>49</u>	45		

Reduced:

Yield = 26%; Biomass = 24%



Long-term Effect of Glyphosate

Special Considerations in Fertilizing RR Crops Two factors: 1) Chemical; 2) gene

1. Providing nutrient availability for yield and quality

Compensate for reduced plant efficiency Compensate for reduced soil availability

2. Detoxifying residual glyphosate

In meristematic root, stem, flower tissues, etc. In soil [Ca, Co, Cu, Mg, Mn, Ni, Zn]

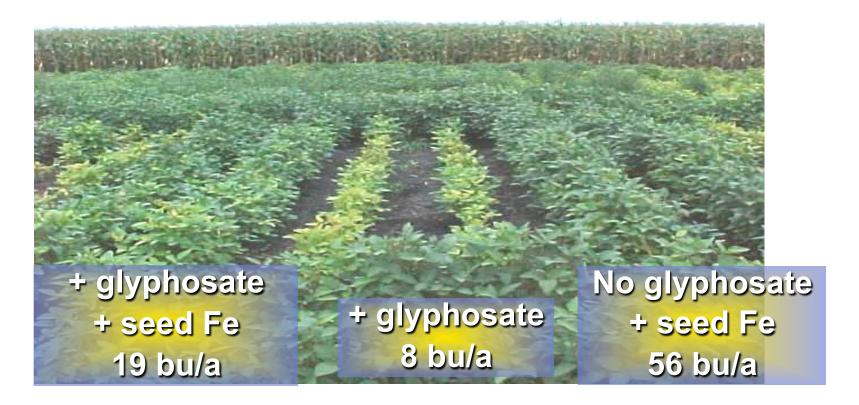
3. Restoring soil microbial activity

Nutrient related (N-fixation, Fe, Mn, Ni, S, Zn, etc.)
Disease control related (nutrition, pathogen antagonists, etc.)
Biological amendment (N-fixers, PGPRs, etc.)

4. Judicious use of glyphosate

Yield Response of Roundup Ready® Soybeans to Micronutrients

	Indiana	Michigan	Kansas	Minnesota
Treatment		Yield	(bu/a)	
Untreated	46	24	77	33
Glyphosate only	57	33	65	8
Glyphosate +	75	56	78	19
Micronutrient	Mn	Mn	Mn	Fe



Glyphosate-induced Fe-deficiency

Response of Roundup Ready© Corn to Zn & Mn

0/a of

Colorado State University, 2007
Mike Bartolo, Sr. Res. Scientist

Viold

Treatment	(bu/a)	control
Untreated*	234 a	100
Glyphosate**	195 d	83
Glyphosate + Zn, Mn	221 b	94

*Hand weeded, **1 lb a.i. + 1 pt AMS/acre

**Glyphosate reduced genetic potential 39 bu/a

F NOTILL FRAMER

2007, North Dakota State University, Carrington

Treatment*	Yield (bu/a)	Increase (bu/a)
Glyphosate control	144	
Foliar applied Zn	158	14
Soil granular Zn sulfa	ate 167	23
Foliar applied Zn+Mi	n 173	29
Seed + Foliar Zn	175	31

Herbicide Affects on RR Corn Yield, Indiana, 2010

	RR Corn Hybrid				
Herbicide	6733HX	6179VT3	5442VT3	5716A3	
Surestart (11")	266*	216	223	219	
Cadet (V6)	227	219	219	213	
Laudis (V6)	224	218	214	214	
Integrity (pre-E)	231	217	215	204	
Glyphosate (V6)	212	20 7	<i>206</i>	<i>210</i>	
Steadfast (V6)	207	204	201	196	
Status (V6)	187	195	193	192	

*125.6 % of glyphosate yield (yields in bu/a - rounded); All plots were hand weeded

20th Annual National No-Tillage Conference St. Louis, Missouri * Jan. 11-14, 2012

Effect of glyphosate and Manganese on Cotton Yield (Texas)

Treatment	% chlorotic plants	# seed cotton
Conventional herbicide	5	4885
Glyphosate	97	2237
Glyphosate + Mn, Zn	2	4693
after Ronnie P	hillips, 2009	

Food and Feed Safety Concerns 1014 2012

- **►**Nutrient deficiency
 - Co, Cu, Fe, Mg, Mn, Zn
- > Increased levels of mycotoxins
 - Fusarium toxins (DON, NIV, ZEA)
 - Aflatoxins
- **▶** Gene flow
 - Weeds
 - Soil microbes
 - Intestinal microbes
- Direct toxicity of residual glyphosate
 - Infertility endocrine system
 - Birth defects, teratogenicity
 - Cell death
 - Intestinal microflora and Disease resistance

Aris & Leblanc, 2011
Benachour et al, 2007
Carmen, et al., 2011
Fernandez, et al., 2009
Gasnier, et al., 2009
Heiman, 2010
Matzk et al, 1996
Seralini et al., 2010, 2011
Smith, 2010
Walsh, et al., 2000

Watts, 2009

% Reduction in Alfalfa Nutrients by Glyphosate*

Nutrient	% reduction compared with Non-RR
Nitrogen	13 %
Phosphorus	15 %
Potassium	46 %
Calcium	17 %
Magnesium	26 %
Sulfur	52 %
Boron	18 %
Copper	20 %
Iron	49 %
Manganese	31 %
Zinc	18 %
FARMER	

Manganese Sufficiency in Bovine Fetus Livers (After Schefers, 2011)

		Manganese level*	
iean	Deficient	Normal	Above
8 ppm	100 %	0	0
ppm	63 %	29 %	7 %
	8 ppm	88 ppm 100 %	88 ppm 100 % 0

Feed Analysis:	Mean Mn	Range of samples
Shelled corn	15 ppm	0.01 - 57.65 ppm
Corn silage	37 ppm	0.01 - 89.43 ppm
Grass hay	50 ppm	0.01 - 125.20 ppm
Mixed haylage	57 ppm	0.55 - 113.45 ppm

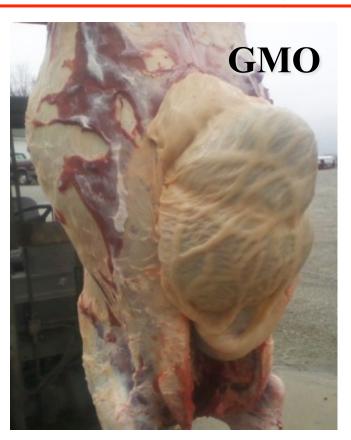
U.S. Cattlemen's Association Statement to Congress

"Cattle ranchers are facing some puzzling - and, at times, economically devastating problems with pregnant cows and calves. At some facilities, <u>high numbers of fetuses are aborting for no apparent reason.</u> Other farmers successfully raise what look to be normal young cattle, only to learn <u>when the animals are butchered that their carcasses appear old</u> and, therefore, less valuable."

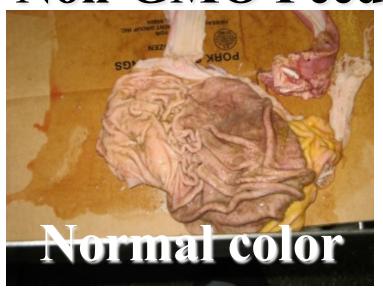
"The sporadic problem is so bad both in the United States and abroad that in some herds around 40-50 percent of pregnancies are being lost."

"The viability of this important industry is threatened."

Source: Testimony of the Ranchers-Cattlemen Action Legal Fund, United



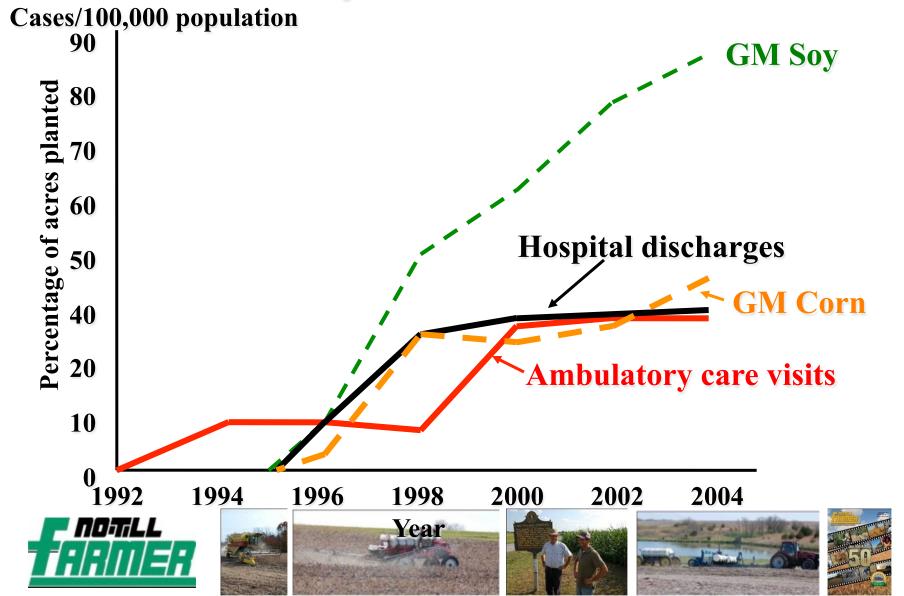
Feed Source Effect on Stomach Liner Color, IA, 2010



Effect of the GM "Gene" Proteins in Corn/Soybeans on Pig Stomachs IA, 2010

Non-GMO Feed

GMO Feed

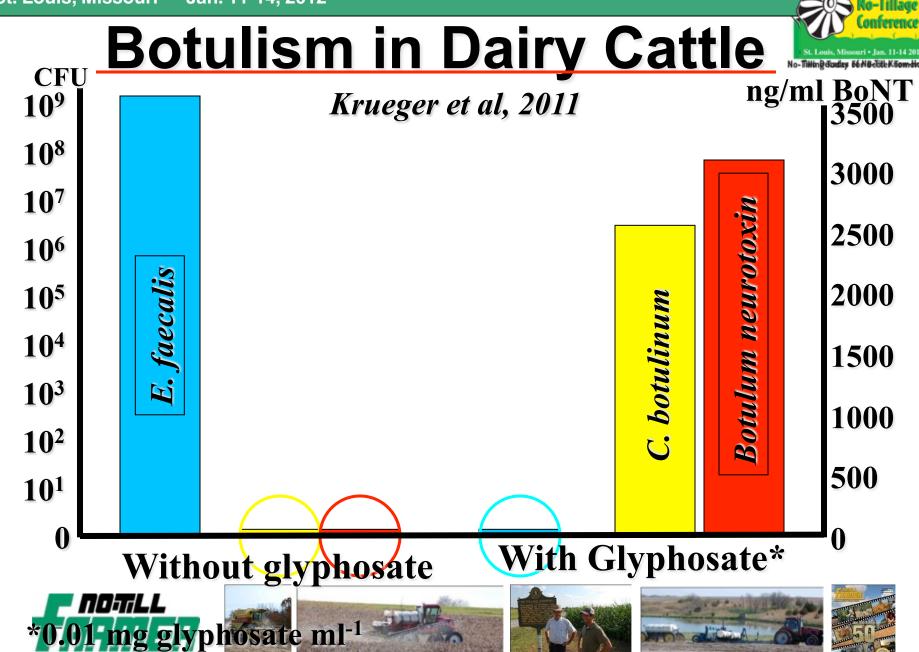


Inflammatory Bowel Disease, US

And the Mice Prefer..

GMO Corn

Photos: Gilbert Hostetler



Cattle Stomachs

Photos: Dr. M. Krueger

20th Annual Kational No-Tillage Conference (St. Louis, Missouri - Jan. 11-14 2012 No-Tilling-Godsy 66 NB-Göth-Kñom-blowws

Direct Toxicity of Glyphosate

Rate (ppm)		System affected	Reference		
0.5	Human cell en	docrine disruption	Toxicology 262:184-196, 2009		
0.5	Anti-androgen	nic	Gasner et al, 2009		
1.0	Disrupts aram	natase enzymes	Gasnier et al, 2009		
1-10	Inhibits LDH,	AST, ALF enzymes	Malatesta et al, 2005		
1-10	Damages liver	, mitochondria, nuclei	Malatesta et al, 2005		
2.0	Anti-Oestroge	nic	Gasnier et al, 2009		
5.0	DNA damage		Toxicology 262:184-196, 2009		
5.0	Human placer	ntal, umbilical, embryo	Chem.Res.Toxicol. J. 22:2009		
10	Cytotoxic		Toxicology 262:184-196, 2009		
10	Multiple cell d	lamage	Seralini et al, 2009		
10	Total cell deat	h	Chem.Res.Toxicol. J. 22:2009		
All	Systemic thro	ughout body	Andon et al, 2009		
1-10	Suppress mito	chondrial respiration	Peixoto et al, 2005		
	Parkinson's	_	El Demerdash et al, 2001		
POEA_	AMPA even m	ore toxic	Seralini et al. 2009		

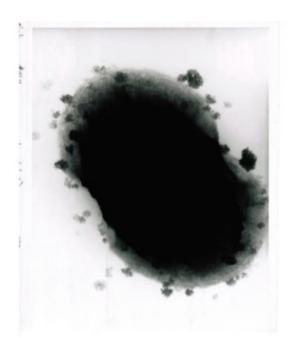
Late term
'Spontaneous
Abortion'
(Miscarriage)

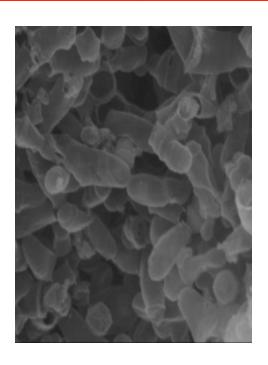
Why are so many cows losing pregnancies? Losing up to 20 percent of pregnancies is not acceptable.

By Jenks Britt, D. V. M. and Fernando Alvarez, M. V. Z.

	Herd						
Characteristics	A	В	C	D	E	F	
Total cows	1,805	1,211	721	2,007	226	1,083	
% herd pregnant	47	49	48	61	47	50	
1st service conception	28	27	30	32	41	41	
Services for all cows	4.3	4.1	3.6	3.0	2.5	2.4	
% pregnant now open	27	25	27	10	6		

Source: Hoards Dairyman, November 2011, p751.





Pure Culture' of Entity Causing, Reproductive Failure in Animals

38,250 X magnification

Size relative to gram⁺ bacterium

SEM of entity

Occurrence

•Verified in IA, IL, KY, MI, NE, ND, SD, WI

 Sources: 'Environmental' Animal tissue

Soybean meal

Silage

Corn grain and silage

SDS Soybean plants

Manure

Soil

Placental tissue

Amniotic fluid

Semen

Stomach contents

Eggs

Milk

Fusarium solani fsp glycines mycelium

Potential Interactions of 'new entity' with Glyphosate Interaction of 'new entity'

Glyphosate affects plants (predisposes):

Inhibits plant defenses, Increases root colonization Reduces nutrient content and efficiency [chemical and RR gene(s)] Increases membrane permeability

Glyphosate affects animals (predisposes):

Inhibits aramatose system — endocrine hormone system Toxic to liver, placental, testicular, and kidney cells Reduced defense - liver function; GI Tract Biocontrols

Glyphosate affects pathogens:

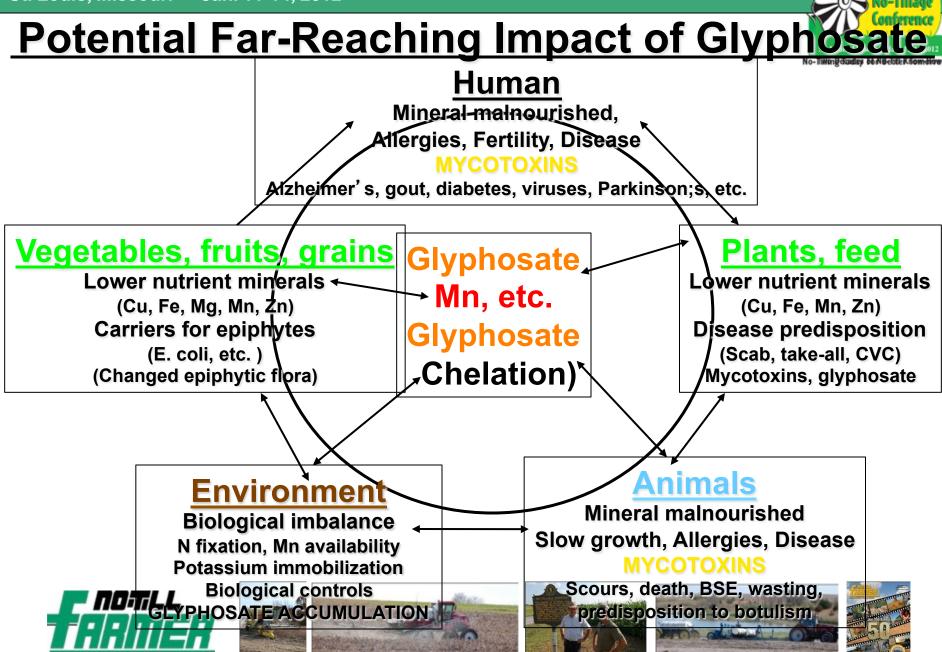
Stimulates growth and virulence (direct/indirect)
Favors synergism, infection (as a carrier)
Increases movement into plant tissues (water film for plant infection)

Glyphosate affects the environment:

Toxic to soil microbes that constrain plant pathogens

Failure to Honor

- * Scientific Precautionary Principle
 - 1. Margin of safety to prevent damage
 - 2. Anticipation of unknowns
 - 3. Initiate as a "pilot project"
- * Not "Substantially Equivalent"-Significant deviation in:
 - 1. Expression of 'end products' (new/tissues in)
 - 2. More like virus infection than sexual transfer
 - 3. Functional and regulatory controls absent
 - 4. Greatly extended exposure
 - 5. Production, quality, safety & toxicity differ



Future historians may well look back and write about our time, not about how many pounds of pesticide we did or did not apply; but by how willing we were to sacrifice our children and jeopardize future generations with this massive experiment that is based on false promises and flawed science, just to benefit the 'bottom line' of a

commercial enterprise.