

Impact of Tillage Systems on Insect, Mite & Slug Pests and Their Control in Selected Field Crops

Prof. C. Richard Edwards Purdue University January 11, 2013

Powering Up Your No-Till System

Range of Tillage Systems*

		Reduced Tillage <30% Soil Residue Cover	Reduced Tillage (Conservation Tillage) >30% Soil Residue Cover				
Moldboard plow	Heavy Offset Disk	Non-conservation Tillage	Other Tillage Systems	Ridge Till	Chisel Plow	Strip Till	No-till
Increasing Residue Covering the Soil							

*Adapted from A. McGuire, Washington State University, MWPS-45

To effectively utilize a conservation tillage system, one's level of understanding & management of the system must elevate to a higher level!!

Not only for agronomic & production aspects, but also pest management!!

Conservation Tillage

> May, or may not, involve the planting of cover crops, such as wheat, rye, clover, etc.

> As we know, not all conservation tillage systems are the same & pest within those systems may not be the same!!

F NOTILL **F H H H H H** Adapted from S. D. Stewart, University of Tennessee, 2003 Beltwide Cotton Conference

In Conservation Tillage ...

Presence of weeds and cover crops can significantly impact the potential for insect, mite & slug problems.

> Good management of these can greatly reduce the potential for insects, mites & slugs !!

How Does Tillage Impact Insects, Mites & Slugs??

> Mechanical -

Destruction or exposure of soil insects & slugs or residue harboring overwintering insect & slug populations.

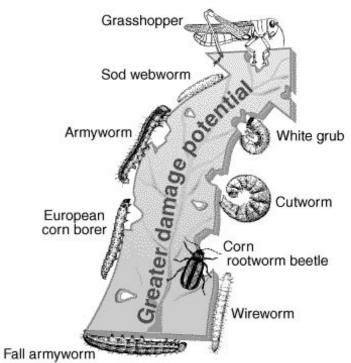
> Ecological -

- > Removal of insect, mite & slug weed hosts.
- > Lack of residue/habitat for beneficial insect species.

> Microclimate -

- Seedbeds may warm up faster in tilled systems, but temperature fluctuations may be greater & can impact pests.
- \succ Soils may get wetter faster, but they also dry quicker.
- > May affect plant growth and insect, mite & slug pest problems.

Adapted from S. D. Stewart, University of Tennessee, 2003 Beltwide Cotton Conference.



Indianapolis, Ind. • Jan. 9-12, 2013

The Potential for Damage in Conservation Tillage Crops Depends on the Pest*

*Adapted from Missouri No-Till Planting Systems Manual, MU Extension, M164.

Indianapolis, Ind. • Jan. 9-12, 2013 Powering Up Your No-Till System

Economics of Pest Management -Thresholds Monitoring Crop Value(s) **Management Costs**

Effect of Reducing Tillage on Pest Populations in Corn*

Sou Decr	No Effect	Some Increase	Modera Increas		rge ease
Slugs	←				\rightarrow
Black Cutworm	←			→	
Armyworm	←			→	
Stalk Borer	←			→	
Seedcorn Maggot	←		→		
Wireworms	←		→		
White Grubs	←		→		

*Modified from A. McGuire, Washington State University, MWPS-45

Effect of Reducing Tillage on Pest Populations in Corn*

	Some Decrease	No Effect	Some Increase	Moderate Increase	Large Increase
Western Bean Cutworm		←			
Stink Bugs		←		•	
European Corn Borer		←	→		
Corn Earworm		←	\rightarrow		
Corn Rootworn	n	←	→		
Corn Leaf Aph	id 🗲		→		

*Modified from A. McGuire, Washington State University, MWPS-45

Corn Insect & Slug Pests #1*

Common & Scientific Name	Attacking Stage	Damage
Gray Garden Slug Deroceras reticulatum (Muller)		Can kill growing point & shred leaves
Black Cutworm Agrotis ipsilon (Hufnagel)	Cuts the notches	arough or s leaves/plants
Armyworm <i>Pseudaletia unipuncta</i> Haworth		Defoliates leaves

*In decreasing order of potential to cause problems in conservation tillage corn plantings.

Corn Insect & Slug Pests #2*

Common & Scientific Name	Attacking Stage	Damage
Brown Stinkbugs Halyomorpha halys (Stahl), Euschistus spp.		king action- deformity lant & leaf holes Open seed slo
Seedcorn Maggot Delia platura (Meigen)		s into seed destroy germ
Wireworms Melanotus spp., Agriotes spp., Limonius spp.		Feed on seed & underground stem

 * In decreasing order of potential to cause problems in conservation tillage corn plantings.

Corn Insect & Slug Pests #3*

Common & Scientific Name	Attacking Stage	Damage
White Grubs Phyllophaga spp., Papilla japonica, Cyclocephala spp.,	UT	Wilted, dead, & missing plants
Western Bean Cutworm <i>Striacosta albicosta</i> (Smith)	Feed on le pollen, silk	eaf tissue, ks, & kernels
Stalk Borer Papaipema nebris (Guenee)		Bores into stems; leaves with holes

*In decreasing order of potential to cause problems in conservation tillage corn plantings.

Corn Insect & Slug Pests #4*

Common & Scientific Name	Attacking Stage	Damage
European Corn Borer <i>Ostrinia nubilalis</i> (Hübner)	Leaf feeding & stalk break	
Western Corn Rootworm Diabrotica virgifera virgifera LeConte		Root destruction
Corn Leaf Aphid <i>Rhopalosiphum maidis</i> (Fitch)		wilt & curl, en ears

*In decreasing order of potential to cause problems in conservation tillage corn plantings.

Effect of Reducing Tillage on Pest Populations in Soybean*

So Decr				rge vease
Slugs		←		\rightarrow
Grasshoppers		←		
Seedcorn Maggot		←		
Bean Leaf Beetle		$\leftarrow \rightarrow$		
Spider Mites	\longleftrightarrow			
Soybean Aphid	\longleftrightarrow			

*Modified from A. McGuire, Washington State University, MWPS-45

Soybean Insect, Mite & Slug Pests #1*

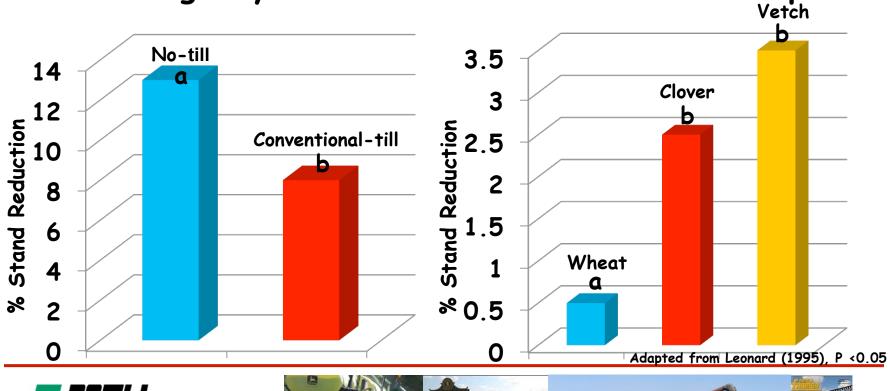
Common & Scientific Name	Attacking Stage	Damage
Gray Garden Slug Deroceras reticulatum (Muller)		Eat on seed, stem & leaves
Grasshoppers <i>Melanoplus</i> spp.	Eat o & poo	n leaves
Seedcorn Maggot Delia platura (Meigen)		Burrow into seed

^{*}In decreasing order of potential to cause problems in conservation tillage soybean plantings.

Soybean Insect, Mite & Slug Pests #2*

Common & Scientific Name	Attacking Stage	Damage
Bean Leaf Beetle <i>Cerotoma trifurcata</i> (Foster)	Feed & pool	on leaves s
Twospotted Spider Mite <i>Tetranychus urticae</i> Koch		Leaf mottling & plant stunting
Soybean Aphid Aphis glycines (Matsumura)		ed growth ed count

⁵In decreasing order of potential to cause problems in conservation tillage soybean plantings.

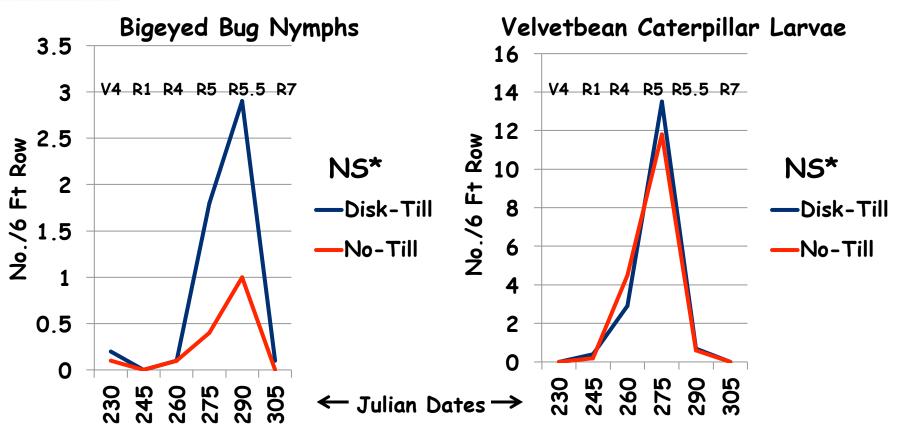


Tillage System

Indianapolis, Ind. • Jan. 9-12, 2013 Powering Up Your No-Till System

Cutworms as Impacted by Tillage

Winter Cover Crop


Xo-Tillage onference Indianapolis, Ind. • Jan. 9-12, 2013 Powering Up Your No-Till System Cutworms - Tillage versus Herbicides 40 35 % Stand Reduction 30 25 →Herbicide 20 **-**Tillage 15 10 5 0 Six Four Two One Weeks Prior to Planting Adapted from Leonard (1993), P < 0.05 NOTLL

21st Annual

Vational

21st Annual National No-Tillage Conference

Soybean Doublecropped with Winter Wheat Powering Up Your No-Till System

Adapted from J.E. Funderburk, North Florida Research and Education Center, University of Florida.

Potential Effects of Conservation Tillage Systems on Insect and Slug Pests in Corn¹

Indianapolis, Ind. • Jan. 9-12, 2013 Powering Up Your No-Till System

Insects	Potential Effect ²	Control ³
Armyworm	0 to +++	S-PEB, F
Black Cutworm	+ to +++	S-PEB, S-IF, S-B, F, TG
Corn Earworm	0 to +	F, TG
Corn Leaf Aphid	0	F
Corn Rootworm	0	S-I, S-B, S- C, TG; Adults F
European Corn Borer	0 to +	F, F-B, TG
Hope Vine Borer	0 to +++	F, F-B

Insects/Slugs	Potential Effect ²	Control ³
Seedcorn Maggot	0 to +	ST, S-IF, S-B
Slugs	+++	В
Stalk Borer	0 to +++	F
Brown Stink Bugs	0 to +	F
Western Bean Cutworm	0 to +	F, TG
White Grubs	+	S-IF, S-B
Wireworms	0 to +	S-IF,S-B

²O = no effect; + = some increase; +++ = substantial increase. The highest rating (+++) represents the extreme. ³B = broadcast application, F = foliar, F-B = banded on foliage, S-B = banded on soil, S-C = soil cultivation, S-IF = soil infurrow, S-PEB = soil preemerge broadcast, ST = seed treatment, TG = transgenic seed.

¹Modified from F. W. Simmons, Soil Management and Tillage Systems, Illinois Agronomy Handbook

Potential Effects of Conservation Tillage Systems on Insect, Mite and Slug Pests in Soybean¹

Insects	Potential Effect ²	Control ³	Insects/Slugs	Potential Effect ²	Control ³
Bean Leaf Beetle	0 to +	F	Spider Mites	0	F
Grasshoppers	0 to +	F	Thistle Caterpillar	0 to ++	F
Japanese Beetle	0 to +	F	White Grubs	0 to ++	R
Seedcorn Maggot	0 to +	ST	Wireworms	0 to ++	R
Soybean Aphid	0	F	Slugs	+++	В

²O = no effect; + = some increase; ++ = moderate increase, +++ = substantial increase. The highest rating (+++) represents the extreme.

³B = broadcast application, F = foliar, R = rotate to another crop so as to control, hopefully, with a soil insecticide, ST = seed treatment.

¹Modified from F. W. Simmons, Soil Management and Tillage Systems, Illinois Agronomy Handbook

Managing Insect, Mite & Slug Pests in Conservation Tillage Fields

Indianapolis, Ind. • Jan. 9-12, 2013

Plant When Soils are Ready!! Powering Up Your No-Till System

Managing Insects & Slugs in Conservation Tillage Fields

Tank mix insecticides with herbicides when planting into live cover crops!!

Managing Insect & Slug Pests in Conservation Tillage Fields

An open seed slot means a vulnerable

seed & growing point!

Give me a break! It's just a little crack in the soil!

Indianapolis, Ind. • Jan. 9-12, 2013

Managing Insect, Mite & Slug Pests in Powering Up Your No-Till System Conservation Tillage Fields

Scout/monitor your fields!!

Conclusions

- Conservation tillage systems are at greater risk from attack by insect, mite & slug pests when compared to conventional tillage. In most instances, however, problems that do arise, or could potentially arise, can be overcome.
- Risks levels are dependent on many factors, but timing and effectiveness of pre-plant herbicides and weather conditions play important rolls as to the actual risk.
- Conservation tillage has mostly positive effects on populations of beneficial arthropods and these organisms can reduce or eliminate the impact of pest species.
- In general, pest populations are not limiting factors to good production when producers are knowledgeable of potential threats, monitor their fields, know where to get assistance when the need arises, and plan ahead to meet all risks.

Adapted from presentations by C.R. Edwards & J.L. Obermeyer, Purdue University & S.D. Stewart, University of Tennessee.

Conservation tillage pest problems aren't necessarily worse...

21st Annual

Indianapolis, Ind. • Jan. 9-12, 2013


Powering Up Your No-Till System

Vational

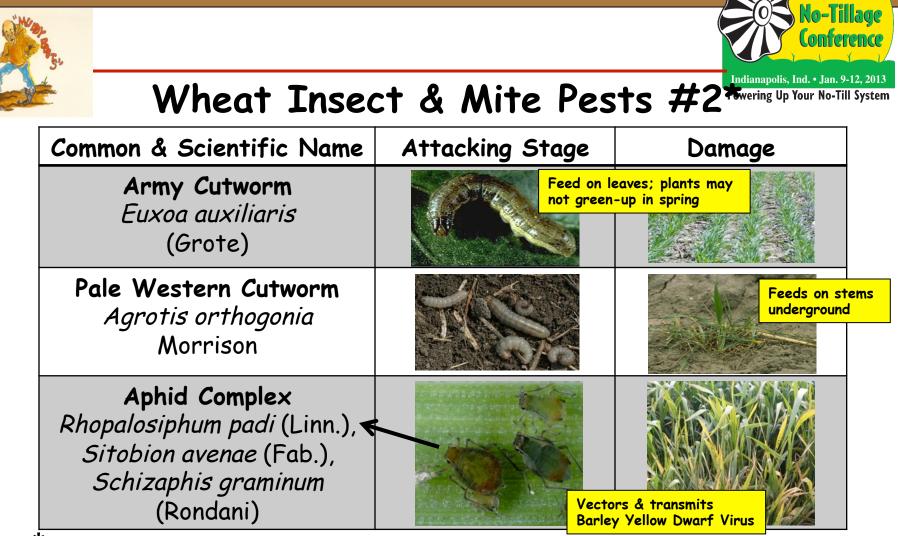
No-Tillage

Indianapolis, Ind. • Jan. 9-12, 2013 Powering Up Your No-Till System

Effect of Reducing Tillage on Pest Populations in Wheat*

	me rease	No Effect	Some Increas		Moderate Increase		'ge ease
Hessian Fly		←					\rightarrow
Wheat Curl Mite		←		\longrightarrow			
Russian Wheat Aphid		←		\rightarrow			
Army Cutworm	←		•				
Pale Western Cutworm	←		•				
Aphids	<	→					

*Modified from A. McGuire, Washington State University, MWPS-45


Wheat Insect & Mite Pests #1*

Common & Scientific Name	Attacking Stage	Damage		
Hessian Fly Mayetiola destructor (Say)		Feed on stems & stems break		
Wheat Curl Mite <i>Aceria tosichella</i> Keifer		& transmits Wheat Mosaic Virus		
Russian Wheat Aphid <i>Diuraphis noxia</i> (Kurdjumov)		Plant stunting rolled-up leave		

*In decreasing order of potential to cause problems in conservation tillage wheat plantings.

In decreasing order of potential to cause problems in conservation tillage wheat plantings.

21st Annual

lational

Potential Effects of Conservation Tillage Systems on Insect and Mite Pests in Wheat¹

Insects	Potential Effect ²	Control ³	Insects/Slugs	Potential Effect ²	Control ³
Aphids	0	ST, F	Pale Western Cutw	0	F
Army Cutworm	0	F	Russian Wheat Aph	0 to +	ST, F
Greenbug	0	F	W. Curl Mite	0 to +	FFD
Hessian Fly	0 to +++	V, FFD	W. Stem Sawfly	0 to +	P, VSS

²O = no effect; + = some increase; +++ = substantial increase. The highest rating (+++) represents the extreme.
³F = foliar, FFD = planting after fly free date, P = enhancing environment for parasitoids, ST = seed treatment, V = varieties, VVS = varieties with solid stems.

¹Modified from F. W. Simmons, Soil Management and Tillage Systems, Illinois Agronomy Handbook

