Tools to Quantify Risk in Nitrogen Management

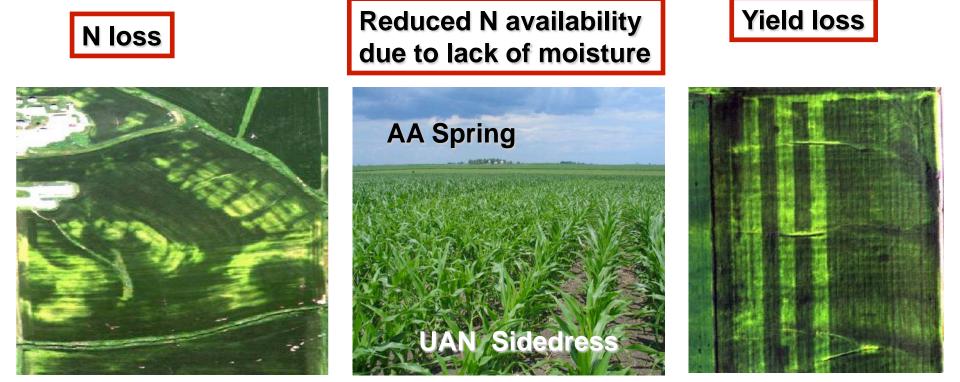
Peter Kyveryga, Ph.D Operations Manager-Analytics Iowa Soybean Association On-Farm Network® pkyveryga@iasoybeans.com January 18, 2014

Driving Forces to Improve N Management

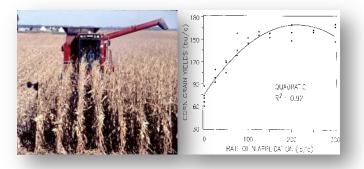
- Improving efficiency and achieving higher profits.
- Environmental concerns and regulatory pressure.
- Sustainability considerations.

Outline

- Common risks in N management for corn.
- Participatory/adaptive management and on-farm evaluations
- Examples of quantifying risk in N management.



Common Risks in N Management



After-the-Fact

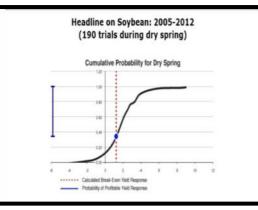
For-the-Future

Description

Uncertainty and Risk

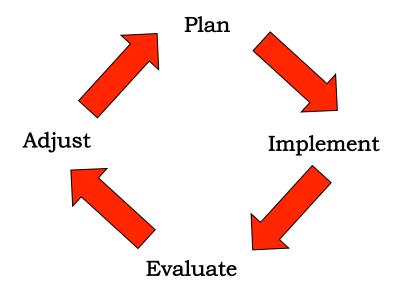
To make prescriptions for the future, we need to address the uncertainty in spatial variability, weather, management, market prices, technological constrains and etc.

LOW



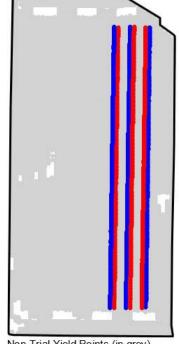
HIGH

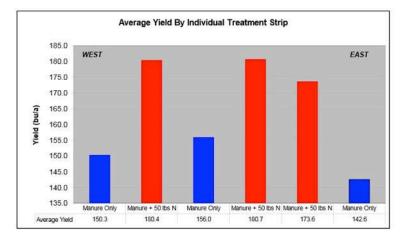
On-Farm Network® Using Precision Ag. Tools to evaluate management practices in crop production.



Participatory Learning/Adaptive Management

Organize farmers to collect data to solve production problems.





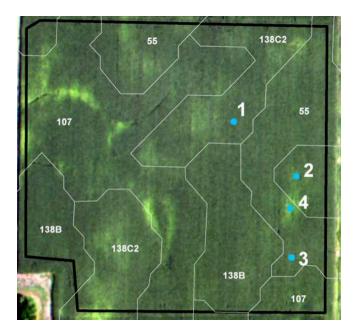
On-Farm Replicated Strip Trials

Non-Trial Yield Points (in grey) Are Not Used In Summary Statistics

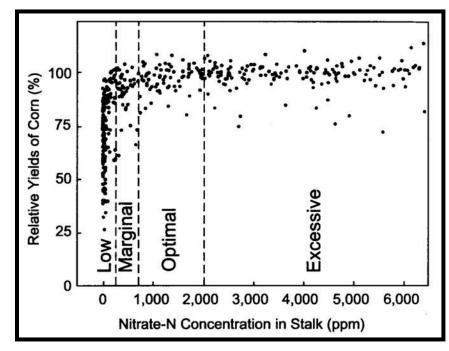
Yield differences between treatments

Aerial imagery

Treatment Layout

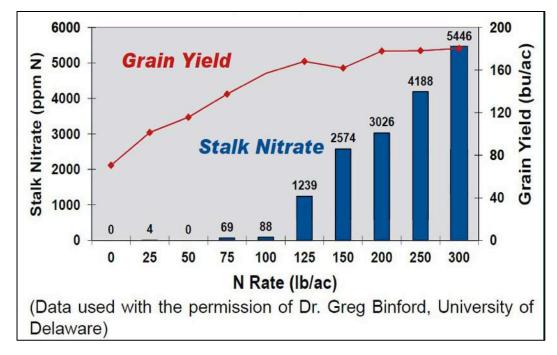


Corn Stalk Nitrate Survey with Late-Season Aerial Imagery



Corn Stalk Nitrate Test

- The test provides corn N status: "supply vs demand".
- Stalk nitrate values do not correlate with yields or economic optimal N rates.

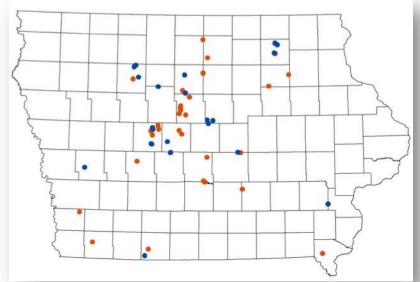


Stalk Nitrate Values and Yields

- Stalk nitrate values do not correlate with yield or economic optimal N rates.
- After-the-fact N status: "supply vs demand".

Quantifying Risk using On-Farm Evaluations

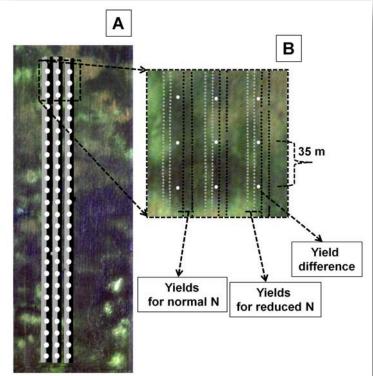
- Risk of economic yield loss from reduced N applications.
- Risk of corn N deficient status within fields.



Risk of Economic Yield Loss from Reducing N Applications

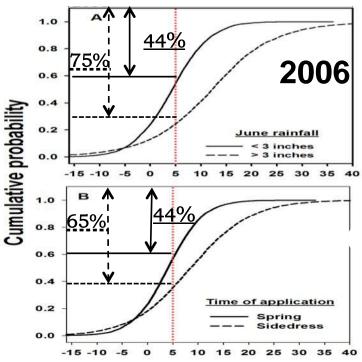
When and where and at what risk?

2006: 34 on-farm trials 2007: 22on-farm trials



Where and When N Rates can be Reduced?

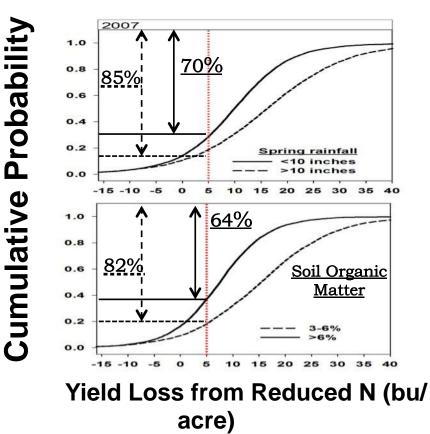
Farmers' normal N rates compared with rates reduced by 50 lb N/acre.



Risk of Economic Yield Loss

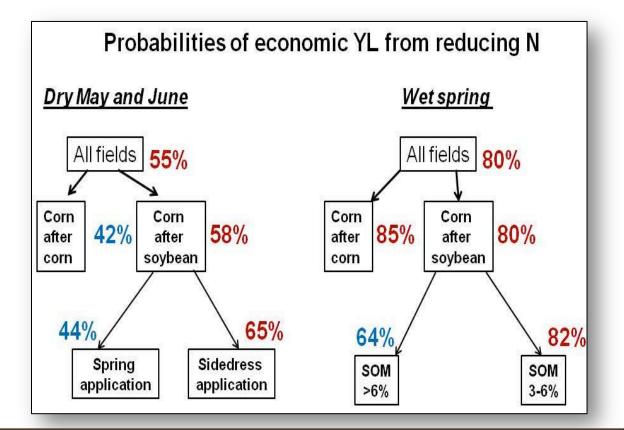
During a dry spring: higher risk from above-normal rainfall in June and larger yield losses from sidedress than from spring N applications.

Yield Loss from Reduced N (bu/acre)



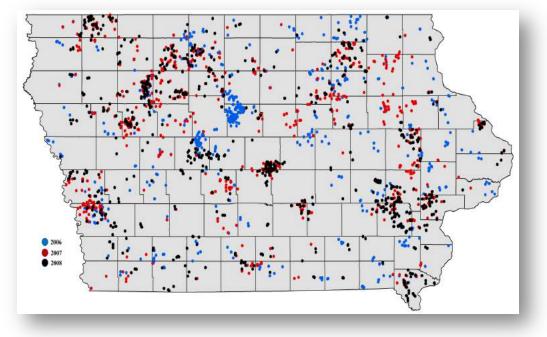
Risk of Economic Yield Loss:

Wet spring: larger risk from above-normal spring rainfall and within areas with lower SOM.



Nitrogen Reduction Decision Tree

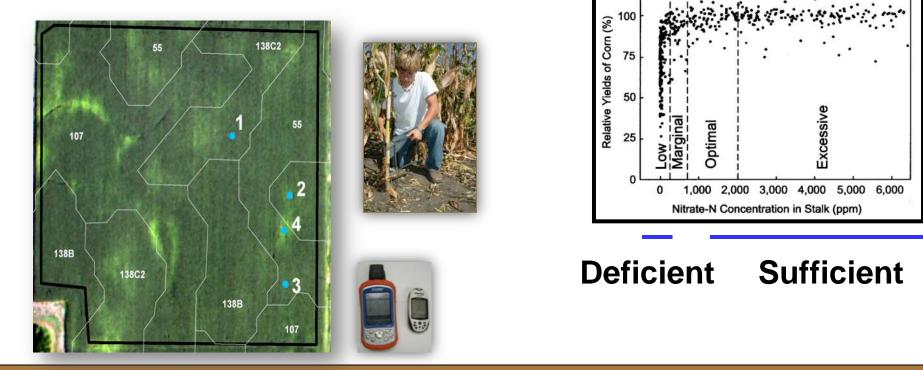
Practices with lower risks (in blue) are more preferable, especially in years with dry May and June.



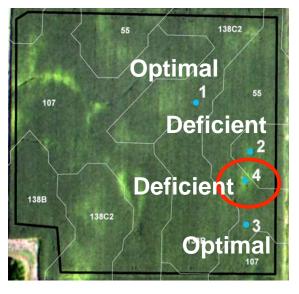
Estimating the Risk of Deficient Corn N Status within Fields

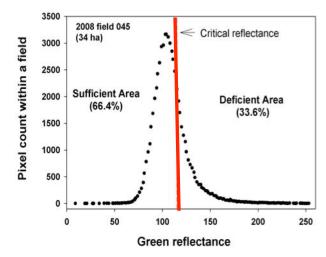
- 2006 --- 683 fields
- 2007 --- 824 fields
- 2008 --- 828 fields

30 groups of growers

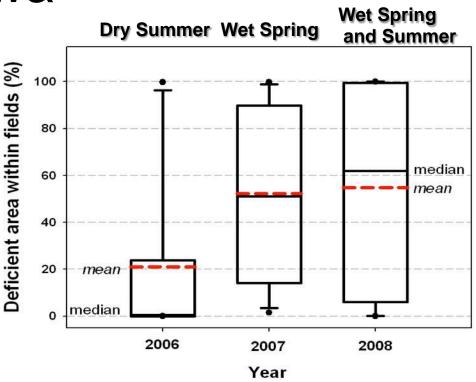


Using Stalk Nitrate Test and Aerial Imagery





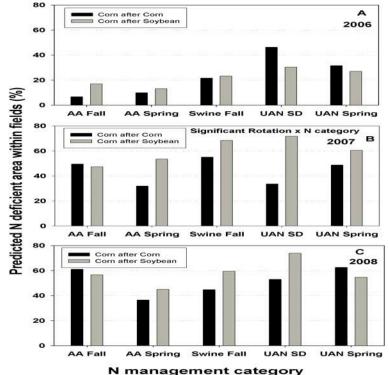
Quantifying Within Field Areas with Deficient N Status



Estimated deficient area: N loss, fertilizer skips or reduced N availability.

Areas with Deficient N Status across Iowa

In relatively wet years (2007-08), the median size of N deficiency area was about 50% and about 0% in the dry year, 2006.

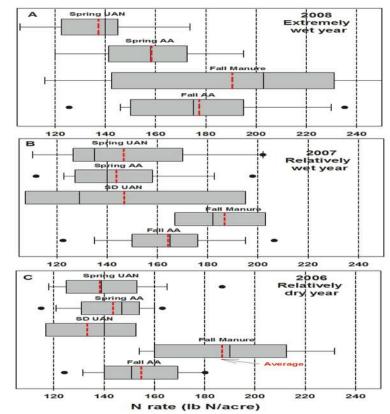


N Deficient Areas for Different Management Practices

Corn after corn fields with Sidedress UAN had the largest areas of N Deficiency in relatively dry 2006; Spring NH3 had the lowest in relatively wet years.

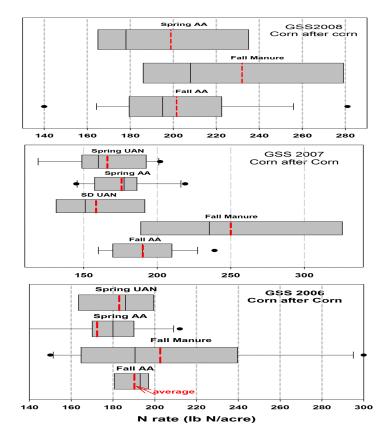
Risk of N Stress in Dry Conditions

Reduced N availability in fields with sidedress UAN because of soil moisture stress, especially corn after corn.



N Rates for Optimal Corn N Status

For corn after soybean, farmers applied slightly higher N rates to get optimal N status for Fallapplied Liquid Swine Manure and Anhydrous Ammonia.



N Rates for Optimal Corn N Status

For corn after corn, slightly higher N rates were used to get optimal corn N status for Fall-applied Liquid Swine Manure and Anhydrous Ammonia.

Risk of N Loss for Different Management Practices in Iowa

N management category	N loss	Factors promoting N loss	Relative risk of N loss during			
(timing plus N source)	mechanism	ractors promoting wioss	wet [§] springs	normal springs		
Fall AA	↓†	Applications to relatively warm soils, high soil pH (>7.5), warm spells during the fall and winter	Very high/high	High/medium		
Fall-injected liquid swine manure [±]	↓† +	Applications to relatively warm soils, high soil pH (>7.5), warm spells during the fall and winter, poor soil sealing during applications	Very high/high	High/medium		
Spring AA	4 † +	Poor soil sealing during applications and high soil pH (>7.5)	Low/medium	Low		
Spring UAN [¶] (incorporated)	↓† +	Heavy rainfall immediately after applications, timing between N application and incorporation into the soil	Very high/high/ medium	Low/medium		
Spring urea [¶] (incorporated)	↓† +	Heavy rainfall immediately after applications, timing between N applications and incorporation into the soil	Medium/low	Low/medium		
Sidedress UAN		Heavy rainfall immediately after applications	Low/medium	Low		
Sidedress AA	↓†		Low	Low		
Dribbled UAN	† ↓†	Wet and heavy crop residues will promote NH ₃ volatilization	Medium/low	Low/medium		

Ways to Quantify Risk in N Management

- Organizing groups of farmers.
- Using tools to collect feedback in N management.
- Aggregating data and quantifying differences between management practices.

On-Line Database of Individual Strip Trial Reports

Year	Crop	Trial Type and Detail					
All Years	All Crops	All Trial Types		All Trial Details			
2013	Corn	Cover Crop	111	2 Pass vs 1 Pass Tillage	II		
2012	Soybeans	Crop Protection - Fungicide		30" Rows vs 15" Rows			
2011 =		Crop Protection - Fungicide and Herbicide		80-200-240 vs 39-100-120			
2010		Crop Protection - Fungicide and Insecticide		Acceleron vs Untreated			
2009 —		Crop Protection - Fungicide and Plant Nutrition		Accomplish LM vs Untreated			
2008		Crop Protection - Fungicide, Herbicide and Insectic	de	Accomplish vs Untreated			
2007 -		Crop Protection - Herbicide	*	Actuate vs Untreated	*		
All Watershed Apple-Plum Big Papillion-I Blackbird-Sold Blue Earth	E Mosquito	All Counties Adams Black Hawk Boone Bremer Buchanan Buchanan Buchanan					
Boone Boyer		Buena Vista					

On-Line Database of Individual Strip Trial Reports

Locati	ion								
All Watersheds Flint-Henderson Upper Iowa		olay Results							
	Year Watershed	County Cro	o Trial Type	Trial Detail	Yield Difference bu/A	Trial ID	Trial Report	tStalk Nitrate Repor	tScouting Report
	2013 Flint-Henderso	on Lee Corr	Plant Nutrition - Manure + Nitrog	gen Manure + N vs Manure	23.9	ST2013IA278A	View		
	2013 Upper Iowa	Hardin Corr	Plant Nutrition - Manure + Nitrog	gen Manure + N vs Manure	-1.5	ST2013IA012A	View		
				Yield Difference of the 2	nvestment				
			To calculate ROI of the s	selected trials, enter a m	arket price for this cro	op and the cos	st per acre.		
				Market Price:	\$ 5				
				Cost Per Acre:	\$ 30				
				Return on Investment:	\$26.000 per acre.				
				Display F	Results				

Benefits of Aggregating Feedback Data from Farmer Groups

 Identifying differences between areas with different soils, rainfall patterns, and crop management.

• Helping farmers to adapt and make better management decisions.

